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We consider the problem of bounding the expected value of a linear program (LP) containing random coe&cients, with applications to
solving two-stage stochastic programs. An upper bound for minimizations is derived from a restriction of an equivalent, penalty-based
formulation of the primal stochastic LP, and a lower bound is obtained from a restriction of a reformulation of the dual. Our “restricted-
recourse bounds” are more general and more easily computed than most other bounds because random coe&cients may appear anywhere
in the LP, neither independence nor boundedness of the coe&cients is needed, and the bound is computed by solving a single LP or
nonlinear program. Analytical examples demonstrate that the new bounds can be stronger than complementary Jensen bounds. (An upper
bound is “complementary” to a lower bound, and vice versa). In computational work, we apply the bounds to a two-stage stochastic
program for semiconductor manufacturing with uncertain demand and production rates.

This paper develops new techniques for bounding the
expected value of a stochastic linear program, which

is a linear program (LP), some or all of whose coe&cients
are random. The random coe&cients may be discretely or
continuously distributed, may be independent or contain de-
pendencies, and may occur anywhere in the objective func-
tion, right-hand side, or constraint matrix. Calculating (or
estimating) the expected value of a stochastic LP is key to
solving two-stage and multi-stage stochastic programs with
recourse (Dantzig 1955).
It is usually impossible to compute exactly the expected

value of a stochastic LP unless the random coe&cients are
discretely distributed and the total number of realizations
of the coe&cients is small, or the problem has a very spe-
cial structure. As a result, solution techniques for stochastic
programming with recourse usually involve approximations
that are based on Monte Carlo sampling (e.g., Ermoliev
1983, Dantzig and Glynn 1990, Higle and Sen 1991) or on
deterministically valid bounds. This paper involves approx-
imations of the latter type.
When initial lower and upper bounds are insu&ciently

tight, they can often be improved within a sequential-
approximation algorithm that iteratively partitions the sup-
port of the random variables (e.g., Kall et al. 1988). We do
not discuss the details of these algorithms here, but note that
our restricted-recourse bounds can be incorporated within
such algorithms just as well as other bounds can, and pos-
sibly better because of improved computational e&ciency
and fewer technical requirements.
The problem of computing the expected value of a

stochastic LP also arises as a stand-alone problem. For in-
stance, the stochastic maximum->ow problem (e.g., Evans

1976) calculates the expected value of the maximum >ow
through a network whose arc capacities are nonnegative
random variables. Another example is the stochastic PERT
problem (Fulkerson 1962), which evaluates the expected
length of a longest path in a directed acyclic network
with stochastic arc lengths. Both of these problems can
also appear as second-stage recourse problems in two-
stage stochastic programs with recourse. In the former
case, Arst-stage decisions make resource-constrained in-
vestments in arc capacities; the problem is to maximize the
expected value of the second-stage recourse function, i.e.,
the expected value of the maximum >ow (Wallace 1987a,
Wollmer 1991). In the latter case, recourse-constrained
investments reduce the (expected) lengths of certain arcs
for the purpose of minimizing the expected length of a
maximum-length path (Wollmer 1985).
Stochastic-programming formulations are used to model

many real-world planning problems that are similar to, but
more complex than the simple network problems just de-
scribed: The structure of the constraints is usually more
involved, and random coe&cients may occur anywhere in
the objective, right-hand, side or constraint matrix. Applica-
tions include capacity-expansion planning in electric power
systems (Dantzig et al. 1989) and the telecommunications
industry (Sen et al. 1994), Anance (Cariño et al. 1994),
hydroelectric scheduling (Jacobs et al. 1995), forest har-
vest management (Gassmann 1989), and vehicle allocation
(Powell 1986). We regard the bounds developed in this
paper as tools with potential for signiAcantly increasing
the applicability of sequential-approximation methods for
solving both the simple and complex problems mentioned
above.
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Deterministic bounds for stochastic LPs may be derived
either from functional approximations of the recourse func-
tion or from approximations of the probability distribution
that governs the random parameters. Themost widely known
bound is based on Jensen’s inequality for convex functions
and, interestingly, this bound can be derived from either type
of approximation (e.g., Kall and Wallace 1994, §3.4). The
bound is easy to compute—the recourse function is evalu-
ated once at the mean of the random parameters—but the
requirement for convexity (or concavity) limits its applica-
bility.
Piecewise-linear bounds (Birge and Wallace 1988, Wal-

lace 1987b, Birge and Wets 1986, Birge and Wets 1989)
are based on a functional approximation. These bounds can
be computed by solving a sequence of restrictions of the re-
course problem and thus yield upper bounds for a minimiza-
tion problem (Birge and Wallace 1988). For the purpose of
solving stochastic LPs, it is signiAcant that the piecewise-
linear bound is complementary to the Jensen bound. That is,
when Jensen’s inequality may be applied to yield a lower
bound, the piecewise-linear bound is an upper bound and
vice versa. The bounds are derived from a separable ap-
proximation of the recourse function that contains a sum of
r one-dimensional expectations, where r is the number of
stochastic parameters. Bounds with this structure typically
can be applied to problems with random parameters that
have bounded or unbounded support. The bounds are rela-
tively easy to compute—they require O(r) solutions of the
recourse problem—but they are eNectively limited to prob-
lems with stochastic right-hand sides only. Other examples
of bounds based on functional approximations can be found
in Birge (1985), Edirisinghe and Ziemba (1992), and Powell
and Frantzeskakis (1994). We discuss these in more detail
after looking at distributional approximations.
Bounds derived from distributional approximations are

exempliAed by the Edmundson–Madansky (E–M) bound
(Edmundson 1956, Madansky 1959) and its generaliza-
tions. The E–M bound is constructed by replacing the
original probability distribution with an approximating dis-
tribution that has mass only at the extreme points of the
random parameters’ support. This bound can be stronger
than alternatives such as the piecewise-linear bound
(Wallace 1987b, Birge and Wallace 1988), but it has sig-
niAcant drawbacks: (a) The random parameters must be
independent and bounded, (b) the recourse function must
be convex or concave, and (c) the recourse function must
be evaluated O(2r) times. Gassmann and Ziemba (1986)
generalize the E–M bound to dependent random variables
deAned on polyhedral sets that need not be bounded. Frauen-
dorfer (1988) generalizes the E–M bound for dependent
random variables deAned on (multidimensional) rectangles
by incorporating cross-moment information.
Frauendorfer (1992) develops a sequential-approximation

algorithm that may avoid the exponential eNort normally
required for bound computation by applying the bounds on
a Cartesian product of simplices. The approach is applicable
to LPs with possibly dependent stochastic right-hand sides

and objectives. Edirisinghe and Ziemba (1994a, 1994b)
extend the bounds to the convex–concave case by applying
them over more general, possibly unbounded, polyhedra.
Edirisinghe (1996) and Edirisinghe and You (1996) de-
velop distributional bounds on simplices and show how to
tighten these bounds by using second-order information and
by using simplices with least possible volume. See DulPa
(1992) for related work using a functional approximation.
Conditional probability mass and moment calculations—

these are required in a sequential-approximation algorithm—
can be di&cult when distributional bounds are applied
on simplices or more general polyhedra that are “un-
natural” with respect to the underlying probability model.
It is possible to circumvent these di&culties (Edirisinghe
1996, Edirisinghe and You 1996, Frauendorfer 1992) by
generating manageable numbers of scenarios via Monte
Carlo sampling and by applying the bounds to the resulting
empirical model rather than the original model. For large
sample sizes, this approach is justiAed by the theory of
epi-convergence (King and Wets 1991).
We note that several of the extensions of the Jensen and

E–M bounds, as well as some bounds based on functional
approximations (e.g., Birge and DulPa 1991, Birge and Wets
1986) may be derived in an alternative manner—in partic-
ular, as solutions of generalized moment problems (Birge
and Wets 1987; Kall 1988; Frauendorfer 1992; Edirisinghe
and Ziemba 1994a, 1994b). This interpretation of bounds
for stochastic programs begins with the work of DupaQcovPa
in a game-theoretic setting ( QZPaQckovPa 1966) and also has ap-
plications in models with incomplete information regarding
the probability distribution (DupaQcovPa 1994).
The restricted-recourse bounds proposed in this paper are

attractive because they: (a) are relatively easy to compute,
(b) are deterministically valid, (c) have no restrictions as to
where random coe&cients may occur in the problem, and
(d) are computable for random coe&cients with bounded or
unbounded ranges. In order to apply the restricted-recourse
methodology, we require that bounds on optimal dual vari-
ables (for the primal bound) or primal variables (for the
dual bound) of the recourse problem be speciAed. In prac-
tice, specifying bounds on primal variables is usually simple,
and models that contain explicit penalties for constraint vio-
lations automatically incorporate bounds on dual variables.
We will illustrate that special structures may be exploited to
derive appropriate dual bounds in many of the cases, too.
The restricted-recourse bounds in this paper may be

viewed as improvements on the penalty-based “aggrega-
tion bounds” developed by Birge (1985) for stochastic
LPs and by Edirisinghe and Ziemba (1992) for two-stage
stochastic (convex) programs. The aggregation bounds are
based on functional approximations for recourse problems
that have explicit penalties for constraint violations and
that have random coe&cients in the right-hand side only.
With this structure, the expected value of the penalty term
separates into a sum of one-dimensional expectations that
is computed for Axed Arst- and second-stage decision vari-
ables. Because the bounds are based on restrictions, they
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are upper (lower) bounds for minimization (maximization)
problems.
Powell and Frantzeskakis (1994) Arst use the term “re-

stricted recourse” for bounding two-stage (and multi-stage)
network recourse problems; their scope is limited to net-
work models with stochastic right-hand sides and constraint-
violation penalties. Like aggregation bounds, their methods
lead to separable approximations of the recourse function.
An important diNerence is that for any Arst-stage decision,
Powell and Frantzeskakis compute the expected cost of a
single best second-stage decision, and they minimize this
expected cost over all Arst-stage decisions. As a result, this
model is less restricted than that employed by aggregation
bounds, and tighter bounds can be obtained. (We note also
that Vladimirou and Zenios (1997) use “restricted recourse”
to refer to a class of models designed to control the vari-
ability of recourse decisions in two-stage stochastic linear
programs.)
Our restricted-recourse bounds substantially generalize

the bounds of Powell and Frantzeskakis because (a) our
bounds are applicable to general LPs, (b) random coe&-
cients may occur anywhere in the problem, and (c) we de-
scribe both primal and dual bounds.
Our Arst application of the generalized version of

restricted-recourse was to a stochastic network-interdiction
problem (Cormican et al. 1996). We solve that problem
using a sequential-approximation algorithm that incorpo-
rates a Jensen upper bound and a restricted-recourse lower
bound. Restricted recourse was not explicitly used to derive
the bound, however, because a reformulation and an appli-
cation of Jensen’s inequality to that reformulation su&ces.
Nonetheless, the current paper generalizes the basic tech-
nique: If bounds on optimal dual variables are available,
we show that any stochastic LP can be converted to an
equivalent problem with a stochastic objective function but
deterministic constraints. By solving a restriction of the re-
formulation in which a single recourse decision is allowed,
an upper (lower) bound results when the original problem
is a minimization (maximization). We classify this bound
as a primal restricted-recourse bound. Evaluation of the
bound is equivalent to solving a stochastic program with
simple recourse (Beale 1955, Wets 1966), so computational
issues are already well studied.
Our technique works in the other direction, too. By Arst

taking the dual of the recourse LP and then applying the
new bounding methodology, we achieve a lower (upper)
bound when the primal problem is a minimization (max-
imization). This result is derived using a restricted dual
problem, so it is a dual restricted-recourse bound. Because
the primal construction yields one bound and the dual con-
struction yields a complementary bound, our techniques
give us the important ability to obtain both lower and upper
bounds on a problem when other bounds are inapplicable
or are more di&cult to use.
Like other functional approximations, our method bounds

an r-dimensional expectation by a sum of lower-dimensional
expectations. For example, if each constraint contains at

most one random parameter the primal restricted-recourse
bound optimizes a sum of one-dimensional expectations that
involve only the random parameters’ marginal distributions.
This is an advantage because the bounds are much easier to
calculate than the original higher dimensional expectation,
and the bounds are valid for dependent as well as indepen-
dent random parameters. That certain dependencies are not
captured is a disadvantage because it can weaken the bounds.
The rest of the paper is outlined as follows. In §1, we

develop primal restricted-recourse bounds for general, two-
stage stochastic-programming problems. We then show
how the primal bounding models vary and can be simpli-
Aed depending on the location of random coe&cients in the
model, and whether the random coe&cients are discretely
or continuously distributed. Also, for some simple network
examples with stochastic right-hand sides, we show
analytically that our bound can be tighter than the com-
plementary Jensen bound. Section 2 develops the dual
restricted-recourse bound, shows various bounding models,
and analyzes some network examples, all analogous to §1.
Section 3 gives computational results for our bounds ap-
plied to a semiconductor manufacturing problem. Section 4
gives conclusions and directions for further research.

1. A PRIMAL RESTRICTED-RECOURSE BOUND
FOR STOCHASTIC LPs

1.1. Preliminaries

A two-stage stochastic LP with recourse may be written as

SLP-2 min
x∈X

cx + Eh(x; �̃);

where

h(x; �̃) =min
y∈Y

f̃y

s:t: D̃y¿B̃x + d̃:

X is a polyhedral set and �̃ = vec(d̃; f̃ ; B̃ D̃), where the
“vec” operator reads its arguments columnwise to form a
single vector. The random vector �̃ is deAned on a proba-
bility space (T; F; P) with a generic realization denoted
�. Deterministic linear constrains on y are represented by
y ∈ Y ; these normally include, at least, the nonnegativity
restrictions y¿0.
One motivation for the bounding techniques described in

this paper is to aid in the solution of problems of the form of
SLP-2. However, for ease of presentation, we assume that
the Arst-stage decision vector x is Axed and focus on bound-
ing the expected value of the redeAned recourse function

RF0 h0(�̃) =min
y∈Y

f̃y

s:t: D̃y¿d̃:

We have suppressed the Axed Arst-stage decision in RF0,
absorbed the entire right-hand side in d̃, and redeAned �̃ to
be �̃ = vec(d̃; f̃ ; D̃). We will refer to RF0 as “the second
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stage” and call y “second-stage variables,” but it should be
clear that RF0 also represents stand-alone stochastic LPs
such as the stochastic maximum->ow and stochastic PERT
problems described in the introduction. We use only “¿”
constraints in developing our initial bound for RF0, but any
combination of inequalities and equalities may be used; see
§1:2. By convention, matrix D has m rows and n columns,
and the remaining matrices and vectors are dimensioned to
conform. Throughout this paper we assume that Arst moment
of �̃ is Anite.
The restricted-recourse bound we develop is based on two

results contained in Lemmas 1 and 2 below.

LEMMA 1 (Madansky 1960). Let h(�̃) = miny∈Y v(y; �)
where v(y; �̃) is a real-valued function. Then

Eh(�̃) = E min
y∈Y

v(y; �̃)6min
y∈Y

Ev(y; �̃):

LEMMA 2. Suppose that the following LP has a /nite opti-
mal solution:

LP0 z∗0 =min
y¿0

fy

s:t: Dy¿d : �

Hy¿h : �;

where � and � are dual variables for the indicated con-
straints. Let �′′ be a vector of upper bounds on �∗ for some

(�∗; �∗) ∈ argmax
�D+�H6f
�¿0; �¿0

|�d + �h|:

Also, let

LP1 z∗1 = min
y∈Y

fy + �′′(d − Dy)+;

where Y = {y : Hy¿h; y¿0}, and where (d − Dy)+ is
the positive part of (d − Dy), i.e., the vector of constraint
violations of Dy¿d. Then, z∗0 = z∗1 .

PROOF. The dual of LP0 is

DP0 z∗0 = max
�¿0; �¿0

�d+�h

s:t: �D+�H6f :

By hypothesis, we may add the upper bounds �′′¿� without
changing the optimal solution value to DP0. Therefore, the
following LP is equivalent to DP0:

DP0a z∗0 = max
�¿0; �¿0

�d + �h

s:t: �D + �H6f
�6�′′:

The dual of DP0a is LP1, so z∗0 = z∗1 . (Expand LP1 into
the form of a standard LP.)

Lemma 1 is the “wait-and-see” bound of Madansky
(1960) and follows directly from exchanging the order of
expectation and optimization. This bound can be applied

to SLP-2 to obtain a lower bound by allowing Arst-stage
decisions to adapt artiAcially to every realization of the
second stage. This is a relaxation of the original problem
and hence yields a lower bound. However, we will apply it
to the second-stage problem to obtain an upper bound by
insisting that only one second-stage decision be employed
for all realizations. This is a restriction and hence leads to
an upper bound.
Lemma 2 is related to results on exact penalty func-

tions for nonlinear programs (Zangwill 1967) and aggrega-
tion bounds for linear programs (Zipkin 1980). This lemma
allows us to restate the primal stochastic LP using an equiv-
alent penalty-based formulation of the problem. Then we
apply restricted recourse, Lemma 1, to the reformulation to
obtain an upper bound. Bounds on dual variables will some-
times be di&cult to obtain, but often will not. For instance,
an elastic LP has explicit penalties �̂ for violating constraints
and these penalties are upper bounds on �.

1.2. The Primal Bound

Here we derive the primal restricted-recourse bound.

THEOREM 1. Let �̃ = vec(d̃; f̃ ; D̃) and

RF0 h0(�̃) =min
y∈Y

f̃y

s:t: D̃y¿d̃ : �(�̃):

Let �′′¿�∗(�̃), wp1 (with probability 1), where �∗(�̃) de-
notes the appropriate subvector of an optimal solution to
the dual of RF0. Then, h′′P¿Eh0(�̃) where

NLP1 h′′P = min
y∈Y

|E f̃ |y + �′′E[(d̃ − D̃y)+]:

PROOF. Let hP(�̃) = min
y∈Y

f̃y + �′′(d̃ − D̃y)+. Then

Eh0(�̃) = EhP(�̃) by Lemma 2

6min
y∈Y

E[f̃y + �′′(d̃ − D̃y)+] by Lemma 1

= min
y∈Y

[E f̃]y + �′′E[(d̃ − D̃y)+]:

The “P” subscript is used because this is the “primal
restricted bound”; the dual restricted bound (§2) will be
indicated with a “D” subscript. Of course, we need to de-
scribe the linear and nonlinear models that are required to
compute the bound proposed in Theorem 1. Before doing
that, however, we wish to point out some important features
of the preceding result.

REMARK 1. Unlike many other bounds, the primal restricted-
recourse bound does not require convexity, concavity, or
saddle-function properties of the recourse function h0(�).

REMARK 2. Finding good bounds on optimal dual variables
is key to the quality of the proposed bound. Special struc-
tures provided by network models, or elastic formulations of
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more general models, often enable one to state such bounds
a priori. Sections 1.4 and 3 illustrate how these dual bounds
may be derived and improved upon.

REMARK 3. If RF0 is reformulated as an elastic model that
includes explicit penalties �̂ for violating constraints, The-
orem 1 follows with �′′ = �̂ because �̂ is an explicit vector
of upper bounds on �∗(�̃). Such explicit penalties also al-
low Theorem 1 to be generalized to models in which the
variables y are restricted to be integers.

REMARK 4. Theorem 1 adapts to any standard constraint
type, not just the “¿” constraints of the canonical LP0=RF0
formulation. For example,

E

[
min
y∈Y

f̃y

s:t: D̃y= d̃

]

6min
y∈Y

[E f̃]y + �′′E[(d̃ − D̃y)+]− �′E[(D̃y − d̃)+];

provided �′6�∗(�̃)6�′′, wp1, where �∗(�̃) is an optimal
dual vector associated with constraints D̃y = d̃ for �̃ =
vec(d̃; f̃ ; D̃).

REMARK 5. NLP1 is a stochastic program with simple re-
course (Wets 1966, Ziemba 1974, Wets 1983), which,
because of its special structure, can be solved with compu-
tational ease compared to stochastic programs with general
recourse.
In the next section, we describe the models that must

be solved to compute the primal restricted-recourse bound.
These models vary depending on whether the random coe&-
cients are continuous or discrete, and become simpler when
only certain subsets of these coe&cients are, in fact, random.

1.3. Models for Computing the Primal Bound

1.3.1. Discrete Random Variables.When D̃ and d̃ are
discrete random variables that take on a Anite number
of values—the form of f̃ is important only through its
mean—NLP1 can be solved as a Anite linear program. Let
the rth realization of the row vector (D̃i·; d̃i) be denoted
(Dr

i·; d
r
i ), let the set Ri index these realizations, and let

pr
i = P[(D̃i·; d̃i) = (Dr

i·; d
r
i )]. NLP1 can now be written as

LP1a min
y∈Y; z¿0

[E f̃]y+
m∑

i=1

∑
r∈Ri

�′′
i p

r
i z

r
i

s:t: Dr
i·y+ zri¿dr

i ; i = 1; : : : ; m; r ∈ Ri:

Before looking more closely at LP1a, it is important to
note that no generality is lost by ignoring Arst-stage vari-
ables in these discrete models. If B̃ of SLP-2 has discretely
distributed random coe&cients with a Anite number of
realizations, the upper-bounding model for SLP-2 simply

becomes

min
x∈X; y∈Y; z¿0

cx +[E f̃]y+
m∑

i=1

∑
r∈Ri

�ipr
i z

r
i

s:t: −Br
i·x+Dr

i·y +zri¿dr
i ; i = 1; : : : ; m; r ∈ Ri;

where the rth realization of the vector (D̃i·; B̃i·; d̃i) is
(Dr

i·; B
r
i·; d

r
i ), Ri indexes these realizations, and pr

i =
P[((D̃i·; B̃i·; d̃i) = (Dr

i·; B
r
i·; d

r
i )]. Some alternative bounds

from the literature can be calculated only with Axed Arst-
stage variables x; restricted-recourse bounds could be com-
puted for Axed x, but we see that a tighter bound may be
obtained by optimizing the bounding model with respect
to x.
Now we consider the size of LP1a. For simplicity, as-

sume that Y consists only of nonnegativity constraints. Note
that the number of structural constraints in the dual of LP1a
is n, the dimension of y, and does not depend on the number
of realizations. Thus, it may be desirable to solve the dual
or apply the dual simplex method (Ziemba 1974, §6). The
number of dual decision variables is

∑m
i=1 |Ri| and hence

can be large. However, the size of this program typically
is much smaller than the size of the deterministic equiva-
lent of the corresponding SLP-2 model because the num-
ber of constraints and variables in that problem depends on∏m

i=1 |Ri|.
LP1a may be of reasonable size for many models. For

example, consider a generalized network with random gains
and losses on arc >ows such as those used in certain Anancial
models (e.g., Mulvey and Vladimirou 1989). In a model with
(a) random returns on asset i from a previous period, (b)
a random conversion coe&cient for cash to the number of
units of asset i, and (c) deterministic exogenous in>ow into
the associated node, the number of stochastic parameters in
(D̃i·; d̃i·) is two. As a result of this low dimension,

∑m
i=1 |Ri|

can be modest: If each random coe&cient can take on k
diNerent values and the original LP has m rows, LP1a will
have mk2 rows, whereas the deterministic equivalent would
have mk2m second-stage rows.

When the recourse matrix D is deterministic, we have a
stochastic program with /xed recourse (Wets 1974), and
|Ri| depends only on the number of possible outcomes of
d̃i. For this case, LP1a simpliAes to

LP1b min
y∈Y; z¿0

[E f̃]y+
m∑

i=1

∑
r∈Ri

�′′
i p

r
i z

r
i

s:t: Di·y+zri¿dr
i ; i = 1; : : : ; m; r ∈ Ri;

where pr
i = P[d̃i = dr

i ].
LP1b can be further simpliAed. Suppose that each d̃i can

take on the values d1
i ¡ d2

i ¡ · · · ¡ d|Ri|
i ; for notational

simplicity, assume that Dy¿0 for all y ∈ Y; d1
i ¿ 0, and
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deAne d0
i = 0. With �r

i = P[d̃i¿dr
i ] LP1b simpliAes to

LP1c min
y∈Y; z

[E f̃]y+
m∑

i=1

∑
r∈Ri

�′′
i p

r
i z

r
i

s:t: Di·y+
∑
r∈Ri

zri¿d|Ri|
i ; i = 1; : : : ; m;

06zri 6dr
i − dr−1

i ; i = 1; : : : ; m; r ∈ Ri:

Therefore, when the right-hand-side d̃ of the stochastic re-
course function consists of discrete random variables, and
D̃ is deterministic, our bounding LP, LP1c, may be only
modestly larger than the “original” deterministic LP, i.e.,
the stochastic LP with the random vector d̃ replaced by a
deterministic vector d. In particular, the bounding LP will
have the same number of structural constraints as the orig-
inal LP and will include the original structural variables y,
but will have an additional set of

∑m
i=1 |Ri| bounded arti-

Acial variables representing possible constraint violations.
For solving this problem, Wets (1983) describes an e&cient
variant of the simplex method that exploits the piecewise-
linear convex functions modeled with the terms

∑
r∈Ri

zri .
He reports that the solution times for such an algorithm are
only “marginally greater” than the times required to solve
the same LPs with each summation replaced by a single vari-
able. For example, for an application in Anance, Kusy and
Ziemba (1986) found the simple-recourse model’s solution
times to be “: : : 1.5–2 times that of a related deterministic
model : : : .”
When attempting to solve two-stage programs by utilizing

LP1c, ordering the realizations of d̃i may not be possible if
d̃ depends on x and we attempt to simultaneously optimize
over x and y. However, in some models, second-stage con-
straints contain random right-hand sides that are separate
from those containing Arst-stage decision variables, and this
issue does not arise. This is illustrated in the computational
example of §3.
Finally, we note that when both D̃ and d̃ are determinis-

tic vectors, our bound reduces to the standard Jensen bound
for a stochastic LP with a stochastic objective function
f̃y.

1.3.2 Continuous Random Variables. When D̃ and d̃ both
contain continuous random variables (again f̃ is unimpor-
tant), using Theorem 1 to compute a bound may be di&cult
because computing expected constraint violations can in-
volve convolutions of random variables whose weights, via
the decision variables y, are not known a priori. However,
when d̃ is continuously distributed, and D̃ is deterministic
(and in the case of two-stage models, B̃ is deterministic),
NLP1may be solved e&ciently because the objective is just
a sum of one-dimensional integrals. For instance, when each
d̃i is uniformly distributed, the bounding model will be a sep-
arable quadratic program. This was shown by Beale (1961)
in the context of stochastic programs with simple recourse
and is illustrated by a simple example in the next section.
Wets (1966) shows that when d̃i is an exponential random

variable, the resulting integral has a simple analytical form,
too. We will return to this case in an example in §2.3.
Even when the objective is not analytically tractable,

NLP1 can be solved with relative ease when D̃ is determin-
istic because the objective is a sum of one-dimensional ex-
pectations. For example, Kall et al. (1988) solve problems
such as NLP1 by applying sequential-approximation meth-
ods with the bounds of Jensen and Edmundson–Madansky.
(The dimensional limitations of the E–M bound are not
a factor in this combined technique because the bound is
applied to one-dimensional expectations.) This method
creates a sequence of discrete approximations to the contin-
uous problem, each of which can be formulated and solved
as described in §1.3.1. Wets (1983) discusses warm-start
procedures for e&ciently solving this sequence of approxi-
mations.

1.4. An Example

For illustrative purposes, we apply the bound of Theorem 1
to the stochastic maximum->ow (SMF) problem (e.g., Evans
1976). For this problem, D̃ is deterministic and only part
of d̃ is random. Let G = (N; A) be a directed graph where
N is the set of nodes and A is the set of arcs. (See Ahuja
et al. 1993 for more detailed deAnitions on network >ows.)
Arc k = (i; j) is directed from node i to node j, and A
includes an artiAcial “return arc” k0 = (t; s) that connects
the “sink node” t to the “source node” s. Let FS(i) (“forward
star of i”) and RS(i) (“reverse star of i”) denote all arcs
directed out of node i and into node i, respectively. Each
arc k, except k0, has a random capacity ũk¿0, which is
an upper bound on arc >ow yk ; yk0 is unconstrained. We
wish to calculate the expected value of the maximum >ow
through the network between s and t. Restated, the problem
is to And Eh0(ũ) where

RF0(SMF) h0(ũ)=max
y

yk0

s:t:
∑

k∈FS(i)

yk−
∑

k∈RS(i)

yk =0 ∀i∈N; (1)

yk6ũk ∀k ∈ A− k0;

(2)

yk¿0 ∀k ∈ A− k0:

(3)

The function h0(u) is concave and hence, the Jensen upper
bound for the SMF problem is simply h′′0 = h0(Yu) where
Yu = Eũ. We now describe our new lower bound, and begin
by stating the relevant variant of Theorem 1:

E

[
max
y∈Y

fy

s:t: y6ũ : �(ũ)

]
= E

[
max
y∈Y

fy − �′′(y − ũ)+
]

¿max
y∈Y

fy − �′′E[(y − ũ)+];

provided �′′¿�∗(ũ),wp1. Here, y∈Y represents constraints
(1) and (3).
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In order to compute the lower bound h′P for the SMF
problem, we require upper bounds on the dual variables
for the arc capacity constraints. Since the maximum >ow
in a network can be increased by at most one unit with
the increase in the capacity of an arc by one unit, the dual
variable associated with each constraint of type (2) is at
most 1. Thus, the following recourse function has the same
value as h0(ũ) for any realization of ũ:

hP(ũ) =max
y¿0

yk0 −
∑

k∈A−k0

(yk − ũk)+

s:t:
∑

k∈FS(i)

yk −
∑

k∈RS(i)

yk = 0 ∀i ∈ N:

The lower bound on Eh0(ũ) is therefore obtained by solving

NLP1(SMF) h′P =max
y¿0

yk0 −
∑

k∈A−k0

E[(yk − ũk)+]

s:t:
∑

k∈FS(i)

yk−
∑

k∈RS(i)

yk = 0 ∀i∈N:

If the random variables ũk are discrete, NLP1(SMF)
becomes a linear program whose objective function is
piecewise-linear and concave in y. In §3 we compute bounds
for problems with discretely distributed random variables,
but at this point it is more revealing to investigate two
simple “limiting problems” where the ũk are continuously
distributed. We compare the quality of the new lower bound
with the Jensen upper bound for these problems.
Let the arc capacities ũk for an SMF problem be uniform

random variables on [0; u′′k ]. Then,

E[(yk − ũk)+] =
∫ yk

0

yk − uk

u′′k
duk =

y2
k

2u′′k
:

Therefore, computing h′P will involve solving a separable
quadratic programming problem. Next, suppose that G con-
sists of n arcs in parallel between s and t (plus the return
arc) and the capacities are i.i.d. uniform random variables
on [0; u′′]. Let Yh(n) denote the true expected maximum >ow
for n arcs, let h′′0 (n) denote the corresponding Jensen up-
per bound, and let h′P(n) denote the new lower bound. The
Jensen upper bound is exact, i.e., h′′0 (n) = Yh(n) = nu′′=2,
because there is only one cut in the network and its average
capacity equals the average (expected) maximum >ow. The
lower bound h′P(n) can be computed by noting that the >ow
yk on each arc k must be the same at optimality, say y, and
the total >ow will be ny. Thus,

h′P(n) = max
y¿0

ny − n
y2

2u′′
=

nu′′

2
;

which is exact like the Jensen bound. (Because the recourse
function is linear in the arc capacities, exact Jensen and
restricted-recourse bounds are actually obtained for any ran-
dom capacities with Anite means; neither the identical nor
independent hypothesis is actually required.)
Next, suppose that G consists of the same n arcs placed

in series between s and t. The average maximum >ow will

be the expected value of the minimum of a set of i.i.d.
uniform random variables. This value is Yh(n) = u′′=(n+1).
In contrast, the Jensen upper bound is h′′0 (n) = u′′=2 so
that limn→∞ h′′0 (n)= Yh(n) = ∞. The lower bound may be
obtained by modifying the derivation for the parallel case,
noting that the >ow on any arc equals the total >ow. Thus,

h′P(n) = max
y¿0

y − n
y2

2u′′
=

u′′

2n
:

This bound is not tight, but h′P(n)= Yh(n)¿1=2 for any n ¿ 0,
and hence it does not become arbitrarily poor for increasing
n as does the Jensen bound.
Before leaving this example, we illustrate how the primal

restricted-recourse bound can be tightened if better bounds
on dual variables are available. The following proposition
is a simple extension of Theorem 1.

PROPOSITION 1. Suppose that bounds on optimal dual vari-
ables �∗(�) are available in RF0 as a function of the
parameters �, i.e., �′′(�̃)¿�∗(�̃), wp1. Then,

Eh0(�̃)6min
y∈Y

[E f̃]y + E[�′′(�̃)(d̃ − D̃y)+]:

For NLP1(SMF), the corresponding functional dual
bound is denoted �′′(ũ) and the bounding problem can be
revised to

NLP2(SMF) h′P =max
y¿0

yk0−
∑

k∈A−k0

E[�′′(ũ)(yk−ũk)+]

s:t:
∑

k∈FS(i)

yk−
∑

k∈RS(i)

yk =0 ∀i∈N:

We can exploit NLP2(SMF) easily in the series-network
example by noting that an optimal dual �∗

k in this problem
is 1 if ũk is a limiting capacity in the network and is 0
otherwise. So, deAne

�′′k (ũ) =
{
1 if ũk′¿ũk ∀k ′;
0 otherwise;

suppose that the ũk¿0 are continuous and i.i.d., and let
ũmin = mink ũk . Then, a revised bound for this example is

h′P(n) =max
y¿0

y −
n∑

k=1

E[�′′
k (ũ)(y − ũk)+]

=max
y¿0

y − nE[�′′
1 (ũ)(y − ũ1)+|ũ1= ũmin]P[ũ1= ũmin]

=max
y¿0

y − E[(y − ũmin)+]

= Eũmin :

This is the exact solution to this problem; we have success-
fully tightened the restricted-recourse bound. If the random
arc capacities have unbounded support, the above optimiza-
tion must be interpreted as the greatest lower bound (i.e.,
supremum) instead of a maximization. Similarly, when nec-
essary, the optimization in Proposition 1 and Theorem 1
should be interpreted as the least upper bound, i.e., “min”
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is replaced with “inf.” (This issue does not arise when Y is
compact, which may be assumed, without loss of generality,
for Anite-valued recourse functions whose random parame-
ters have bounded support.)
In this example, the �′′k (ũ) are optimal dual variables, not

just bounds on optimal dual variables.We do not suggest that
it will normally be possible to obtain optimal dual variables
as a function of the random parameters and thereby And
the exact solution to a stochastic programming problem.
However, by using dual bounds that are functions of some
of the random variables in the problem, it may be possible
to improve the quality of a restricted-recourse bound.

2. DUAL RESTRICTED-RECOURSE BOUND

The problem addressed here is to compute a lower bound
on Eh0(�̃), where

RF0 h0(�̃) = min
06y6u

f̃y

s:t: D̃y¿d̃:

The resulting bound will be complementary to the bound
developed in §1. Recall that the primal restricted-recourse
bound requires dual bounds �′′¿�∗(�̃), but only for con-
straints that contain stochastic parameters. Similarly, the
dual restricted-recourse bound developed in this section re-
quires simple bounds on y (or on y∗(�̃), an optimal solution)
but only for columns of RF0 that contain stochastic parame-
ters. Analogous to the discussion at the end of §1.4, we may
tighten the dual restricted-recourse bound by using bounds
on y of the form u(�̃); this is illustrated in §3. For nota-
tional simplicity in this section, we assume that all columns
of RF0 have stochastic parameters and that each yj has a
deterministic simple upper bound, i.e., yj6uj for all j.

2.1. The Dual Bound

THEOREM 2. Let �̃=vec(d̃; f̃ ; D̃). Then, h′D6Eh0(�̃), where

NLP2 h̃
′
D = max

�¿0
�[Ed̃]−

n∑
j=1

ujE[(�D̃·j − f̃j)
+]:

PROOF. By taking the dual of RF0 and applying Lemma 2,
we may re-express h0(�̃) as

h0(�̃) = max
�¿0;�¿0

�d̃ − �u

= max
�¿0

�d̃ −
n∑

j=1

uj(�D̃·j − f̃j)
+

s:t: �D̃ − �I6f̃ :
By applying a restriction, i.e., the “max” variant of Lemma
1, we obtain

Eh0(�̃)¿max
�¿0

�[Ed̃]−
n∑

j=1

ujE[(�D̃·j − f̃j)
+] = h′D:

As in §1, convexity of h0(�) is not required to obtain the
lower bound in Theorem 2. Naturally, sharp bounds u on
y∗(�̃) will yield tighter lower bounds on Eh0(�̃) and, as with
the primal bound, computing h′D is equivalent to solving a
stochastic program with simple recourse. Models that allow
e&cient computation of the bounds are discussed next.

2.2. Models for Computation

2.2.1. Discrete Random Variables.When D̃ and f̃ are dis-
crete random variables that take on a Anite number of values.
NLP2 can be solved as a linear program. Note that the bound
from Theorem 2 depends on d̃ only through its mean. Let
realizations of the jth column vector ( f̃j; D̃·j) be denoted
(fr

j ; Dr
·j) where r ∈ Rj, and let the corresponding proba-

bility mass function be denoted P[( f̃j; D̃·j) = (fr
j ; Dr

·j)] =
pr

j . With this notation, NLP2 may be written as

max
�¿0; z¿0

�[Ed̃]−
n∑

j=1

∑
r∈Rj

pr
jujzrj

s:t: �Dr
·j − zrj6fr

j ; j = 1; : : : ; n; r ∈ Rj:

(4)

Taking the dual of (4) yields the following primal formu-
lation:

max
y¿0

n∑
j=1

∑
r∈Rj

fr
j yr

j

s:t:
n∑

j=1

∑
r∈Rj

Dr
·jy

r
j¿Ed̃;

yr
j6pr

juj; j = 1; : : : ; n; r ∈ Rj:

(5)

In the case of a two-stage stochastic LP, Ed̃ would simply
be replaced by Ed̃+ [EB̃]x, and the minimization would be
taken over x and y.
The number of structural constraints in (5) does not de-

pend on the number of realizations, and the number of deci-
sion variables is

∑n
j=1 |Rj|. While this value may be large,

it is typically much smaller than
∏n

j=1 |Rj|, which deter-
mines the size of the deterministic equivalent for the original
problem SLP-2. When the number of stochastic parameters
per column is modest, computing the bound via (5) will be
practical. For example, if the recourse problem involves op-
timization over a typical generalized network, |Rj| would
be at most 2, corresponding to stochastic cost and gain (or
loss) coe&cients.
When D̃ is deterministic, the size of the model depends

only on the number of realizations in the marginal distribu-
tions of f̃j. The form of the bounding program (5) does not
change, except that Dr

·j becomes D·j. When both D̃ and f̃
are deterministic, it is clear from (5) that the proposed lower
bound is equivalent to Jensen’s bound for a stochastic LP
with a random right-hand side.

2.2.2. Continuous Random Variables.When D̃ is determin-
istic but f̃ is continuous, computing the lower bound directly
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from the NLP2 formulation is possible because it involves
only one-dimensional integrals. The remarks from §1.3.2 re-
garding analytically available nonlinear objective functions
and the use of bounding and approximation techniques are
also relevant here. In the next section, we give an example
where the random cost coe&cients are exponential random
variables.

2.3. Example

A simple example to which the above technique may be
applied is the stochastic shortest-path (SSP) problem (e.g.,
Frank 1969, Mirchandani 1976). We are interested in com-
puting the expected length of a shortest path between nodes
s and t in a directed network G where the length (e.g., time,
distance, or cost) of each arc k = (i; j) is a random variable
c̃k . Assuming that there are no negative-length cycles in G,
the deterministic shortest-path problem may be formulated
as a network >ow problem that routes one unit of >ow as
cheaply as possible from s to t. Thus, SSP computes Eh0(c̃),
where h0(c̃) is deAned by

RF0(SSP) h0(c̃) =min
y¿0

∑
k∈A

c̃kyk

s:t:
∑

k∈FS(i)

yk −
∑

k∈RS(i)

yk

=




1 for i = s;
0 ∀i ∈ N − {s; t};

−1 for i = t:

Applying Jensen’s inequality to this problem yields an upper
bound h′′0 = h0( Yc). In order to derive our complementary
lower bound we take the dual of the shortest path problem:

RF0(SSP; dual) h0(c̃) =max
�

�s − �t

s:t: �i − �j6c̃k

∀k = (i; j) ∈ A:

Using the fact that yk61, the bound may be stated:

h′D = max
�

(�s − �t)−
∑

k=(i; j)∈A

E(�i − �j − c̃k)+: (6)

We illustrate this bound with an example in which the
nonlinear terms in the objective of (6) may be integrated
analytically. Suppose that each arc k has length c̃k that is
distributed as an exponential random variable with rate (k ,
i.e., Fk(c) = 1− e−(kc for c¿0. In this case, the nonlinear
objective terms become

∑
k=(i; j)∈A

∫ �i−�j

0
(�i − �j − c)(ke(kc dc

=
∑

k=(i; j)∈A

[
(�i − �j) +

1
(k

exp[−(k(�i − �j)]− 1
(k

]
:

(7)

For an SSP with exponential arc lengths, we may bound
the optimal objective from below by solving the uncon-
strained optimization problem given by (6) and (7). We
investigate two limiting cases here to compare the accuracy
of the new lower bound to the complementary Jensen bound.
Suppose that G consists of n arcs, arranged in paral-

lel, with lengths that are i.i.d. exponential random variables
with common rate (. Let Yh(n) denote this network’s ex-
pected shortest path length. This is just the expected value
of the minimum of n i.i.d. exponential random variables,
so Yh(n) = 1=n(. The Jensen upper bound, denoted h′′0 (n),
is the expected length of any arc, so h′′0 (n) = 1=( and
limn→∞ h′′0 (n)= Yh(n) = ∞; i.e., the bound becomes arbi-
trarily poor as n increases.
The dual restricted-recourse bound for this problem, de-

noted h′D(n), is better. DeAning y = �s − �t , the objective
of the bounding problem may be written as

y − n
[
y +

1
(
e−(y − 1

(

]
: (8)

Minimization of this function through calculus yields

h′D(n) =
1
(
+

n− 1
(

log
(
1− 1

n

)
:

It is easy to show that limn→∞ h′D(n)= Yh(n) = 1=2. Thus
the bound is not tight, but it does not become worthless
for large values of n. The structure of the dual formulation
of this problem is identical to the series SMF problem of
§1.4 so that the same technique may be used to obtain an
exact bound. In particular, this result is achieved using the
functional primal bounds

uk(c̃) =
{
1 if c̃k′¿c̃k ∀k ′;
0 otherwise:

Finally, suppose that G consists of n arcs in series where
the arc lengths are random variables. The true expected
shortest path length is the expectation of a sum of n random
variables, so Yh(n) = E

∑
k∈A c̃k = n=(. The Jensen upper

bound is just the sum of the individual expectations, so it is
exact.
To compute our bound, we begin with the dual for-

mulation. Because of the series structure of the network,
the inequalities in the dual must hold with equality. With
y = �s − �t , the dual recourse function reduces to

max
y

y

s:t: y6
∑
k∈A

c̃k :

This leads to the bound h′D(n) = E
∑

k∈A c̃k = n=(, and thus
the restricted-recourse lower bound is also exact.

3. A COMPUTATIONAL EXAMPLE

This section describes a pilot model for capacity expansion
in the semiconductor manufacturing industry and then uses
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the model to demonstrate the formulation and computation
of restricted-recourse bounds. This model is an extension of
StaNord (1997).
In this strategic model, budget-constrained purchases of

semiconductor wafer-fabrication machines are made in the
Arst stage so that uncertain demands for wafers of various
types and quantities can be met in the second stage as best
possible. Demand distributions cover demands over a one-
month period, starting about one year in the future—one
year being the approximate lead time for delivery and set-up
of the fabrication machines. Because of this long lead time,
there is signiAcant uncertainty in what the actual demands
will be.
Production of a wafer requires multiple steps in a speci-

Aed order, although a single machine may be able to perform
more than one step. Because the model is strategic, how-
ever, it does not schedule wafer production per se. Rather,
it determines production quantities, ensures that the total
number of steps of each type is su&cient to meet production
quantities, and ensures that the total time required to per-
form the assigned steps does not exceed available machine
time.
Because demands are aggregates over the period of a

month, and because there is a wealth of experience with
most of the machine types, the model assumes that the
availability of the machines is deterministic. That is, the
number of actual production hours available on each ma-
chine (accounting for down-time for maintenance and re-
pair) is assumed known. On the other hand, because some
of the wafer types that the machines will be producing
are new, there is uncertainty in the processing time that
the steps will require. Therefore, the second stage of the
model incorporates uncertainty in production rates as well as
demands.

3.1. The Model

The two-stage stochastic mixed-integer program (MIP) for
wafer production (WMIP) is speciAed below.

Indices and Index Sets
m ∈ M Machine types
w ∈ W Wafer (product) type
s ∈ S Process steps
Sw ⊆ S Process steps required by wafer type w
Swm ⊆ Sw Process steps for wafer w that can be performed

on machine m
Wm ⊆W Wafers that may be processed on machine m
Msw ⊆M Machines that can perform step s for wafer w

Data
um Number of existing machines of type m
cm Unit cost to purchase a machine of type m
B Total budget for purchasing machines
Tm Production time available per machine of type m
.m Unit shortage penalty for wafer type w
t̃swm Random processing time for step s for w on m
d̃w Random demand for wafer type w

Decision Variables
xm Number of machines of type m to purchase (Arst

stage)
yw Number of wafers of type w to produce (second

stage)
zswm Number of steps s for wafer w to assign to ma-

chine m (second stage)
vw Unmet demand for wafer type w (second stage)

Formulation
WMIP z∗ =min

x
Ef(x; d̃; t̃)

s:t:
∑
m∈M

cmxm6B

xm ∈ Z+ ∀m ∈ M;

where f(x; d̃; t̃) =min
v; y; z

∑
w∈W

.mvm;

(9)

s:t:
∑

w∈Wm

∑
s∈Swm

t̃swmzswm6 Tm(um + xm) ∀m ∈ M; (10)

∑
m∈Msm

zswm − yw ¿ 0 ∀w ∈ W; s ∈ Sw; (11)

yw + vw ¿ d̃w ∀w ∈ W; (12)

yw; vw ¿ 0 ∀w ∈ W;

zswm¿ 0 ∀w ∈ W; s ∈ Sw; m ∈ Msw:

Constraint (9) is the Arst-stage budget constraint. Second-
stage constraints limit the processing time on machines
to time available (10), ensure that processing steps are
assigned to meet production quantities (11), and meet de-
mand elastically (12). First-stage variables are required to
be integral because the number of machines to be purchased
is small, about six. Second-stage variables are continuous
because the number of wafers being produced is large, in
the hundreds. We note that WMIP is similar in structure
to a production model developed by Higle and Sen (1994),
except that their model does not involve separate process
steps on diNerent machines.

3.2. Restricted-Recourse Bounds for WMIP

For the purpose of stating the restricted-recourse bounding
models, we need additional deAnitions and assumptions:

1. Demands, d̃w, are discretely distributed with realiza-
tions dl

w, for l ∈ Lw = {1; 2; : : : ; |Lw|}; d0
w ≡ 0, dl−1

w ¡ dl
w

for l ∈ Lw, and �l
w ≡ P[d̃w¿dl

w] for l ∈ Lw. In the primal
bounding model, unmet demand vw is expanded by demand
level l to vl

w.
2. Because .w is an explicit elastic penalty on the demand

constraint (12) indexed by w, .w is an upper bound on the
dual variable associated with that constraint.
3. Processing times t̃swm ¿ 0 are discretely distributed

with realizations tiswm ∈ Iswm, and mass functions pi
swm ≡

P[t̃swm = tiswm]; i ∈ Iswm. In the dual bounding model,
assignment variables zswm are expanded to ziswm; i∈ Iswm.
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For the primal bounding model, we require Rm =∏
w∈Wm; s∈Swm

Iswm, the sample space for the vector of pro-
cessing times that corresponds to each machine. Let pr

m =
P[t̃swm = trswm ∀w ∈ Wm; s ∈ Sw] for r ∈ Rm. In the primal
bounding model, assignment variables zswm are expanded
to zrswm; r ∈ Rm, and constraint-violation variables for the
expanded versions of constraint (10) are denoted gr

m.
4. The dual variables associated with (10) are nonpositive,

and thus lower bounds on these variables are needed for the
primal restricted-recourse model (see Remark 4 in §1.2).
These bounds can be made functions of the realization r
(see §1.4). We use �′r

m = minw∈Wm; s∈Swm{−.w=trswm}.
5. Upper bounds on primal variables zswm are needed to

compute the dual restricted-recourse lower bound. These
bounds can be made functions of both Tm(um + xm) and
the realization of t̃swm and yield constraints ziswm6Tm(um +
xm)=tiswm.
6. The restricted-recourse bounds are valid for random

parameters with general dependency structures. With respect
to both the primal and dual bounding models, we require
only the marginal distributions of the demand parameters.
However, to calculate the primal bound we must compute
pr

m, and hence we must specify the structure relating the
processing times on each machine. We will assume that for
each m, t̃swm; ∀w ∈ Wm; s ∈ Sw are independent.

The model for the primal restricted-recourse bound, with
Arst-stage solution denoted x∗P, is

WMIP-P min
x; g; v; y; z

∑
w∈W

∑
l∈Lw

.w�l
wv

l
w −

∑
m∈M

∑
r∈Rm

pr
m�′r

mgr
m

s:t:
∑

w∈Wm

∑
s∈Swm

trswmzswm − gr
m

6Tm(um + xm) ∀m ∈ M; r ∈ Rm;∑
m∈Msw

zswm − yw¿0 ∀w∈W; s∈Sw;

yw +
∑
l∈Lw

vl
w¿d|Lw|

w ∀w ∈ W;

∑
m∈M

cmxm6B;

xm ∈ Z+ ∀m ∈ M;

yw ¿ 0 ∀w ∈ W;

06 vl
w6dl

w − dl−1
w ∀w∈W; l∈Lw;

gr
m¿ 0 ∀m ∈ M; r ∈ Rm;

zswm¿ 0 ∀w ∈ W; s ∈ Sw; m ∈ Msw:

The model for the dual restricted-recourse bound, with Arst-
stage solution denoted x∗D, is

WMIP-D min
x; v; y; z

∑
w∈W

.wvw

s:t:
∑

w∈Wm

∑
s∈Swm

∑
i∈Iswm

tiswmziswm

6Tm(um + xm) ∀m ∈ M;

∑
m∈Msw

∑
i∈Iswm

ziswm − yw¿0

∀w ∈ W; s ∈ Sw;

yw + vw ¿Ed̃w ∀w ∈ W;∑
m∈M

cmxm6B;

xm ∈ Z+ ∀m ∈ M;

yw; vw ¿0 ∀w ∈ W;

06ziswm6pi
swmTm(um + xm)=tiswm

∀m ∈ M; w ∈ Wm;

s ∈ Swm; i ∈ Iswm:

3.3. Computational Results

Here we test the accuracy and speed of computation for
the bounds produced byWMIP-P andWMIP-D. We also
examine the tightness of the bounds as the variability of the
random processing times increases.
The test scenario has 27 machine types (only a subset of

all types will be purchased), 10 wafer types, up to 7 produc-
tions steps for each wafer, 6 existing machines, each of a
diNerent type, and an unmet demand penalty of .w = 1 for
all wafer types w. The budget B and costs cm allow for the
purchase of six machines. For all wafer types w, demands
have realizations dl

w ∈ {50 + 25l; l = 1; : : : ; 5} (monthly
data have been scaled to units for a single day), with mass
function P[d̃w = dl

w] ≡ pl
w = 0:1; 0:2 :0:4; 0:2; 0:1 for l =

1; : : : ; 5, respectively. Available time is Tm = 800 minutes
for each machine. Mean processing times Et̃swm range be-
tween 2 and 9 minutes, and t̃swm is a binary random variable
with equal probability of taking on either value. SpeciAcally,
the realizations are (1 − 4)Et̃swm and (1 + 4)Et̃swm, where
4 is a parameter that will be varied to test sensitivity of the
bounds to the variability of these random parameters. Our
data and formulation limit us to handling two or three re-
alizations of each processing time because of the exponen-
tial expansion required in the structural constraints indexed
by Rm in the primal bounding model. WMIP has a total of
|W |+∑

w∈W |Sw| = 10+ 52 = 62 random parameters, and
under the assumption that the random parameters are inde-
pendent (one probability model for which the bounds are
valid), has 510 · 252 total scenarios.

All testing is performed on an IBM RS-6000 Model 590
computer with 512 megabytes of RAM. Models are gener-
ated using GAMS (Brooke et al. 1992) and solved using the
OSL (1993) mixed-integer solver.WMIP-P has 1152 vari-
ables and 1292 structural constraints while WMIP-D has
325 variables and 282 structural constraints. All MIPS are
solved to within an absolute tolerance of 0.1 units, which is
accounted for in the reported results.
Table 1 lists computational results with six diNerent values

of 4. The table lists the following values:

1. The value of 4.
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Table 1. Computational results for WMIP-P and WMIP-D.

Lower bounds Upper bounds Solution Secs.

4 WLP-D WMIP-D WMIP-P WMIPf-P MC WMIP-D WMIP-P WMIPf-P

0.00 114.63 168.11 233.99 233.99 179.27(4.69) 8.19 46.95 2.10
0.05 76.33 127.51 263.28 263.28 173.30(4.70) 6.09 62.40 3.33
0.10 34.24 86.57 292.43 292.43 171.35(4.39) 6.38 58.98 3.58
0.15 0.00 43.88 320.73 320.73 162.68(4.42) 2.08 60.61 3.75
0.20 0.00 0.00 346.95 376.29 158.64(4.41) 0.53 56.56 3.09
0.25 0.00 0.00 371.99 380.76 152.67(4.86) 0.20 47.13 2.91

WMIP-D Dual lower-bounding model.
WMIP-P Primal upper-bounding model.
WMIPf-P Primal upper-bounding model with x Axed to x∗D.
WLP-D LP relaxation of WMIP-D.
MC Monte Carlo model: upper bound (std. dev.) for WMIP with x = x∗P

2. The lower bound provided by the LP relaxation of
WMIP-D. (A valid lower bound for WMIP is ob-
tained by solving any relaxation of WMIP-D.)

3. The lower bound provided by solvingWMIP-D (with
integer restrictions).

4. The upper bound provided by solving WMIP-P.
5. The upper bound provided by solvingWMIP-P with
x Axed at x∗D, the solution derived from WMIP-D.
(A valid upper bound on z∗ is obtained by solving any
restriction of WMIP-D.)

6. A crude Monte Carlo estimate of an upper bound on
z∗, with x Axed at x∗P. This is computed by solving the
second-stage recourse problem fromWMIP (with x =
x∗P) for 200 independent and identically distributed
observations of the vector of random parameters. For
this calculation we assume that the entire collection
of random demands and processing times are mutually
independent.

7. The solution time for the dual bounding model
WMIP-D. (We do not make the obvious simpliAca-
tions of either model when 4 = 0, i.e., when the t̃swm

are constants.)
8. The solution time for the primal bounding model
WMIP-P.

9. The solution time for the primal bounding model
WMIP-P with x Axed at x∗D.

Table 1 demonstrates a number of issues regarding this
application of restricted-recourse bounds. Both the primal
upper-bounding model WMIP-P and the dual lower-
bounding modelWMIP-D are relatively easy to solve; see
the Arst two columns of solution times. Of the two models,
WMIP-P is larger and more di&cult to solve because of
the constraints indexed by Rm.
We note that the solution to the LP relaxation of

WMIP-D does not provide a very tight bound on the op-
timal solution value (see the lower bounds from WLP-D
and WMIP-D), so we cannot expect to use this easier-
to-compute lower bound directly. This also means that
optimally solving WMIP-P or WMIP-D with a branch-
and-bound algorithm is likely to become more di&cult as

the size of the feasible set of Arst-stage solutions increases.
For instance, when the budget allows the purchase of nine
machines and

∑
m um =3, solution times increase by a

factor of about 200%.
Rather than solvingWMIP-P exactly to compute an up-

per bound on z∗, a bound can be obtained by solving a re-
striction ofWMIP-P. Fixing x to an estimate of x∗ yields
an easier-to-solve LP. One obvious estimate of x∗ is x∗D
because it is feasible and relatively easy to compute. The
upper bounds obtained using this estimate are listed under
WMIPf-P in the table. For our test scenario, x∗D is an op-
timal solution toWMIP-P for 4 = 0; 0:05; 0:10; 0:15. The
lower bounding model is not very informative for 4 = 0:20
and 4 = 0:25 and this hints that x∗D may not be a very good
estimate of x∗. In fact, the bound derived from WMIPf-P
does deteriorate somewhat relative to WMIP-P for these
values of 4.
Clearly, the primal and dual bounding models do not

yield su&ciently tight bounds to be useful as a stand-
alone solution technique for WMIP. However, this is
understandable. First, z∗ is a relatively high-dimensional
expectation (with 62 random parameters), and it would be
surprising if a deterministic bounding technique yielded
tight bounds. Second, except for the machine-wise in-
dependence assumption on t̃swm; ∀w ∈ Wm; s ∈ Sw,
the numerical values from Table 1 are valid for a wide
range of dependency structures on the random parame-
ters; because of this, we cannot expect particularly tight
bounds. Furthermore, we envision the primal and dual
bounds being applied like other bounds within sequential-
approximation procedures. The gaps in the bounds of
Table 1 are reasonably consistent with the initial gaps—
prior to reAning the bounds by applying them in a con-
ditional fashion—found in the computational work of
Edirisinghe and You (1996), Edirisinghe and Ziemba
(1996), and Frauendorfer (1992).

4. CONCLUSIONS

This paper has developed primal and dual versions of a
restricted-recourse bound for bounding the expected value
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of a stochastic recourse function that evaluates a linear pro-
gram with random coe&cients. We show that any such
recourse function can be written as an equivalent function
with random coe&cients appearing only in the objective
function of a primal or dual reformulation of the problem.
Taking the expectation of the reformulation and then ex-
changing the order of expectation and optimization yields the
bound.
When only the objective function or right-hand side of the

original recourse function is random, one of our bounds is
equivalent to the Jensen bound, and our other bound is com-
plementary. So, restricted recourse provides an alternative to
standard bounds (e.g., Edmundson–Madansky, piecewise-
linear) for obtaining a complementary bound. However,
restricted-recourse bounds can be applied when the Jensen
bounds and other bounds that exploit convexity cannot be
employed (or become computationaly prohibitive). Such is
the case when random coe&cients appear in some combi-
nation of the right-hand side, objective function, and con-
straint matrix. SigniAcantly, restricted recourse can be used
to obtain both lower and upper bounds for such problems
by operating on both primal and dual reformulations of the
recourse problem.
Computing a restricted-recourse bound is equivalent to

solving a stochastic program with simple recourse. For
continuous distributions of the random coe&cients, the
bounding models are convex nonlinear programming prob-
lems. When distributions are discrete, the models are LPs
with piecewise-linear objective functions. Limiting exam-
ples show that the new bounds can be tighter than com-
plementary Jensen bounds, and applying the bounds to a
semiconductor manufacturing model demonstrates that the
bounds can be computed with modest eNort.
There are many avenues open for utilizing, reAning, and

extending the techniques described in this paper. We have
already successfully employed the bounds in a sequential-
approximation algorithm for stochastic network-interdiction
problems, but further work is necessary to solve larger and
more general problems. It is clear that primal restricted-
recourse bounds can be used with recourse functions
modeled as elastic integer programs, but the quality and
computational e&ciency of such bounds remains untested.
Also, additional research will be needed in order to more ef-
fectively employ our bounds for general (non-network) LP
recourse functions: Optimal primal and dual variables must
be bounded to use restricted recourse, and good bounds for
general models may be di&cult to obtain.
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